Childhood undernutrition yearly kills 3.1 million children worldwide. For those who survive early life undernutrition, it can cause motor and cognitive development problems that translate into poor educational performance and limited work productivity later in life. It has been suggested that nutrition-specific interventions (e.g., micronutrient supplementation) that directly address the immediate determinants of undernutrition (e.g., nutrient intake) need to be complemented by nutrition-sensitive interventions that more broadly address the underlying determinants of undernutrition (e.g., food insecurity). Here, we argue that forest conservation represents a potentially important but overlooked nutrition-sensitive intervention. Forests can address a number of underlying determinants of undernutrition, including the supply of forest food products, income, habitat for pollinators, women's time allocation, diarrheal disease, and dietary diversity. We examine the effects of forests on stunting-a debilitating outcome of undernutrition-using a database of household surveys and environmental variables across 25 low-and middle-income countries. Our result indicates that exposure to forest significantly reduces child stunting (at least 7.11% points average reduction). The average magnitude of the reduction is at least near the median of the impacts of other known nutrition interventions. Forest conservation interventions typically cover large areas and are often implemented where people are vulnerable, and thus could be used to reach a large number of the world's undernourished communities that may have difficult access Rasolofoson et al. Forest Conservation: Potentially Nutrition-Sensitive to traditional nutrition programs. Forest conservation is therefore a potentially effective nutrition-sensitive intervention. Efforts are needed to integrate specific nutrition goals and actions into forest conservation interventions in order to unleash their potential to deliver nutritional benefits.