Our voice provides salient cues about how confident we sound, which promotes inferences about how believable we are. However, the neural mechanisms involved in these social inferences are largely unknown. Employing functional magnetic resonance imaging, we examined the brain networks and individual differences underlying the evaluation of speaker believability from vocal expressions. Participants (n = 26) listened to statements produced in a confident, unconfident, or "prosodically unmarked" (neutral) voice, and judged how believable the speaker was on a 4-point scale. We found frontal-temporal networks were activated for different levels of confidence, with the left superior and inferior frontal gyrus more activated for confident statements, the right superior temporal gyrus for unconfident expressions, and bilateral cerebellum for statements in a neutral voice. Based on listener's believability judgment, we observed increased activation in the right superior parietal lobule (SPL) associated with higher believability, while increased left posterior central gyrus (PoCG) was associated with less believability. A psychophysiological interaction analysis found that the anterior cingulate cortex and bilateral caudate were connected to the right SPL when higher believability judgments were made, while supplementary motor area was connected with the left PoCG when lower believability judgments were made. Personal characteristics, such as interpersonal reactivity and the individual tendency to trust others, modulated the brain activations and the functional connectivity when making believability judgments. In sum, our data pinpoint neural mechanisms that are involved when inferring one's believability from a speaker's voice and establish ways that these mechanisms are modulated by individual characteristics of a listener. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.