Severe respiratory disorder induced by pulmonary inflammation is one of the causes of acute respiratory distress syndrome, which still has high mortality. It is crucial to remove causative substances and inflammatory mediators early in order to inhibit the progression of pulmonary inflammation. Total alveolar lavage (TAL) may avert the inflammatory response by eliminating causative substances in certain inflammatory lung diseases. We developed an efficient TAL system and examined the efficacy of short-term TAL treatment performed for acute lung injury models of rats. In the first experiment with a severe lung injury model, 15 rats were divided into 3 groups: sham group, mechanical gas ventilation (MGV) treatment group, and TAL treatment group. The treatments were conducted for 5 min, 20 min after the provocation of inflammation. Two days after treatment, the TAL and MGV treatment groups exhibited significant differences in blood oxygen levels, mean arterial pressure, weight-loss ratio, and inflammatory cytokine levels in the lungs. In contrast, almost no differences were observed between the TAL treatment and sham groups. In the second experiment with a lethal lung injury model, the TAL treatment dramatically improved the survival rate of the rats compared to the MGV treatment groups (p = 0.0079). Histopathological analysis confirmed pronounced differences in neutrophil accumulation and thickening of the interstitial membrane between the TAL and MGV treatment groups in both experiments. These results indicate that as little as 5 min of TAL treatment can protect rats from acute lung injury by removing causative substances from the lungs.