We introduce new axioms for the class of all TU-games with a fixed but arbitrary player set, which require either invariance of an allocation rule or invariance of the payoff assigned by an allocation rule to a specified subset of players in two related TU-games. Comparisons with other axioms are provided. These new axioms are used to characterize the Shapley value, the equal division rule, the equal surplus division rule and the Banzhaf value. The classical axioms of efficiency, anonymity, symmetry and additivity are not used.