Conspectus
The ice
premelt, often called the quasi-liquid layer (QLL), is
key for the lubrication of ice, gas uptake by ice, and growth of aerosols.
Despite its apparent importance, in-depth understanding of the ice
premelt from the microscopic to the macroscopic scale has not been
gained. By reviewing data obtained using molecular dynamics (MD) simulations,
sum-frequency generation (SFG) spectroscopy, and laser confocal differential
interference contrast microscopy (LCM-DIM), we provide a unified view
of the experimentally observed variation in quasi-liquid (QL) states.
In particular, we disentangle three distinct types of QL states of
disordered layers, QL-droplet, and QL-film and discuss their nature.
The topmost ice layer is energetically unstable, as the topmost
interfacial H
2
O molecules lose a hydrogen bonding partner,
generating a disordered layer at the ice–air interface. This
disordered layer is homogeneously distributed over the ice surface.
The nature of the disordered layer changes over a wide temperature
range from −90 °C to the bulk melting point. Combined
MD simulations and SFG measurements reveal that the topmost ice surface
starts to be disordered around −90 °C through a process
that the topmost water molecules with three hydrogen bonds convert
to a doubly hydrogen-bonded species. When the temperature is further
increased, the second layer starts to become disordered at around
−16 °C. This disordering occurs not in a gradual manner,
but in a bilayer-by-bilayer manner.
When the temperature reaches
−2 °C, more complicated
structures, QL-droplet and QL-film, emerge on the top of the ice surface.
These QL-droplets and QL-films are inhomogeneously distributed, in
contrast to the disordered layer. We show that these QL-droplet and
QL-film emerge only under supersaturated/undersaturated vapor pressure
conditions, as partial and pseudopartial wetting states, respectively.
Experiments with precisely controlled pressure show that, near the
water vapor pressure at the vapor-ice equilibrium condition, no QL-droplet
and QL-film can be observed, implying that the QL-droplet and QL-film
emerge exclusively under nonequilibrium conditions, as opposed to
the disordered layers formed under equilibrium conditions.
These
findings are connected with many phenomena related to the
ice surface. For example, we explain how the disordering of the topmost
ice surface governs the slipperiness of the ice surface, allowing
for ice skating. Further focus is on the gas uptake mechanism on the
ice surface. Finally, we note the unresolved questions and future
challenges regarding the ice premelt.