Photonic Therapeutics and Diagnostics VI 2010
DOI: 10.1117/12.848347
|View full text |Cite
|
Sign up to set email alerts
|

Wide-field and high-resolution optical imaging for early detection of oral neoplasia

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2013
2013

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…12,20 The combination of large FOV imaging for macroscopic surveillance with high resolution imaging or point measurement techniques has the potential to improve diagnosis and diagnostic yield by guiding the effective point sampling technique to the site with the most advanced state of disease within a lesion or the oral cavity. 11,[21][22][23] Wide-field autofluorescence imaging instruments are commercially available for clinical oral cancer detection; of interest in epithelial precancer progression are collagen crosslinks in the stroma and metabolic cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in epithelial cells. Increased cellular metabolism in epithelial dysplasia results in an increase in NADH and FAD fluorescence signal; conversely, in inflammation, the epithelial cell fluorescence decreases slightly.…”
Section: Introductionmentioning
confidence: 99%
“…12,20 The combination of large FOV imaging for macroscopic surveillance with high resolution imaging or point measurement techniques has the potential to improve diagnosis and diagnostic yield by guiding the effective point sampling technique to the site with the most advanced state of disease within a lesion or the oral cavity. 11,[21][22][23] Wide-field autofluorescence imaging instruments are commercially available for clinical oral cancer detection; of interest in epithelial precancer progression are collagen crosslinks in the stroma and metabolic cofactors nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) in epithelial cells. Increased cellular metabolism in epithelial dysplasia results in an increase in NADH and FAD fluorescence signal; conversely, in inflammation, the epithelial cell fluorescence decreases slightly.…”
Section: Introductionmentioning
confidence: 99%