A 37 dBm power amplifier (PA) is designed on a 0.25 µm optical T-gate pseudomorphic high electron mobility transistor (pHEMT) technology. The design of this two-stage PA along with a step-by-step design procedure is presented in this paper. This methodology can be used for design of PA in different technologies and frequencies. The PA delivers 5 W output power over the frequency band of 13-19 GHz. It shows average power-added efficiency of 37% and large signal gain of 15 dB in measurements which is consistent with simulation results. The output power and efficiency of the realised amplifier reach maximums of 37.6 dBm and 45%, respectively. Considering output power, bandwidth, chip area and efficiency, this PA exhibits competitive performance compared to the reported PAs.