Wind farms (WFs) include an enormous number of wind turbines (WTs) in order to achieve high capacity. The interaction among WTs reduces the extracted amount of wind energy because wind speed decreases in the wake region. The optimal placement of WTs within a WF is therefore vital for achieving high performance. This permits as many WTs as possible to be installed inside a narrow region. In this work, the water cycle algorithm (WCA), a recently developed optimizer, was employed to identify the optimal distribution of WTs. Minimization of the total cost per kilowatt was the objective of the optimization process. Two different cases were considered: the first assumed constant wind speed with variable wind direction, while the second applied variable wind speed with variable wind direction. The results obtained through the WCA optimizer were compared with other algorithms, namely, salp swarm algorithm (SSA), satin bowerbird optimization (SBO), grey wolf optimizer (GWO), and differential evolution (DE), as well as other reported works. WCA gave the best solution compared to other reported and programmed algorithms, thus confirming the reliability and validity of WCA in optimally configuring turbines in a wind farm for both the studied cases.