At present, wind energy industry is facing major design constraints in boosting the power output. These can be overcome by setting up the right turbine at the right place. This paper proposes an optimized layout design of a wind farm by using Definite Point selection(DPS) and genetic algorithm, which can minimize the cost per unit power and minimum wake effects, while sustaining the obligatory space between adjacent turbines for operation safety. The existing cost per unit power can be reduced by changing the dimensions of wind farm with constant area. In this study, the velocity deficits caused by the wakes of each turbine were calculated by using Jensens wake model. The total area of wind farm 2 Km x 2 Km was divided into 10x10 cells with each cell having dimensions 200 m x 200 m. The results showed that power output of the wind farm by using the same area in different dimension was increased even when the total numbers of wind turbines were the same. It was observed that 32 wind turbines in 2 Km x 2 Km area could produce a total power of 16,251.56 kW with fitness value of 0.001537. The present research results had been validated using the results from previous studies.
The popularity of electric vehicles (EVs) is increasing day by day due to their environmentally friendly operation and high milage as compared to conventional fossil fuel vehicles. Almost all leading manufacturers are working on the development of EVs. The main problem associated with EVs is that charging many of these vehicles from the grid supply system imposes an extra burden on them, especially during peak hours, which results in high per-unit costs. As a solution, EV charging stations integrated with hybrid renewable energy resources (HREs) are being preferred, which utilize multi-energy systems to produce electricity. These charging stations can either be grid-tied or isolated. Isolated EV charging stations are operated without any interconnection to the main grid. These stations are also termed standalone or remote EV charging stations, and due to the absence of a grid supply, storage becomes compulsory for these systems. To attain maximum benefits from a storage system, it must be configured properly with the EV charging station. In this paper, different types of the latest energy storage systems (ESS) are discussed with a comprehensive review of configurations of these systems for multi-energy standalone EV charging stations. ESS in these charging stations is applied mainly in three different configurations, named single storage systems, multi-storage systems, and swappable storage systems. These configurations are discussed in detail with their pros and cons. Some important expectations from future energy storage systems are also highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.