Near-surface remote sensing is an effective tool for in situ monitoring of canopy phenology, but the uncertainties involved in sensor-types and their deployments are rarely explored. We comprehensively compared three types of sensor (i.e., digital camera, spectroradiometer, and routine radiometer) at different inclination- and azimuth-angles in monitoring canopy phenology of a temperate deciduous forest in Northeast China for three years. The results showed that the greater contribution of understory advanced the middle of spring (MOS) for large inclination-angle of camera and spectroradiometer. The length of growing season estimated by camera from the east direction extended 11 d than that from the north direction in 2015 due to the spatial heterogeneity, but there was no significant difference in 2016 and 2018.The difference infield of view of sensors caused the MOS and the middle of fall, estimated by camera, to lag a week behind those by spectroradiometer and routine radiometer. Overall, the effect of azimuth-angle was greater than that of inclination-angle or sensor-type. Our assessments of the sensor types and their deployments are critical for the long-term accurate monitoring of phenology at the site scale and the regional/global-integration of canopy phenology data.