Abstract. An automated wind turbine wake characterization algorithm has been developed and applied to a dataset of over 19,000 scans measured by scanning Doppler lidar at Perdigão over the period January to June 2017. The algorithm correctly identifies the wake centre position in 62 % of possible wake cases, 46 % having a clear and well-defined wake centre while 16 % have split centres or multiple lobes. Only 5 % of cases are not detected, the remaining 33 % could not be categorized either by the algorithm or subjectively, mainly due to the complexity of the background flow. Average wake centre heights categorized by inflow wind speeds are shown to be initially lofted (to 2 rotor diameters, D) except when the inflow wind speeds exceed 12 ms−1. Even under low wind speeds, by 3.5 D downstream of the wind turbine, the mean wake centre position is below the initial wind turbine hub-height and descends broadly following the terrain slope. However, this behaviour is strongly linked to hour of the day and atmospheric stability. Overnight and in stable conditions the average height of the wake centre is 10 m higher than in unstable conditions at 2 D and 17 m higher at 4.5 D downstream of the wind turbine.