The open sea is considered an ecological barrier to terrestrial bird movement. However, over-water journeys of many terrestrial birds, sometimes hundreds of kilometers long, are being uncovered by bio-logging technology. To understand how these birds afford their flights over the open sea, we investigated the role of atmospheric conditions in subsidizing sea-crossing behavior at the global scale. By analyzing forty years of temperature data, we show that the spatio-temporal patterns of sea-crossing in terrestrial migratory birds correspond to favorable uplift conditions. We then analyzed route selection over the open sea for four bird species with varying levels of dependence on soaring flight, representing all major migratory flyways worldwide. Our results showed that favorable uplift conditions, albeit not as common and as powerful as over land, are not rare over the open seas and oceans. Moreover, wind, which is more variable than uplift in its spatio-temporal distribution, is the determining factor in the birds' route selection over the open sea. Our findings suggest a need for revisiting how ecological barriers are defined, to reflect what we know of animal movement in the era of bio-logging.