In addition to superior energy-conversion efficiency at millimeter-scale dimensions, ultrasonic wireless powering offers deeper penetration depth and omnidirectionality as compared to the traditional inductive powering method. This makes ultrasound an attractive candidate for powering deep-seated implantable medical devices. In this paper, we investigate ultrasonic powering of millimeter-scale devices with specific emphasize on the output power levels, efficiency, range, and omnidirectionality. Piezoelectric receivers 1 ×5 ×1 mm(3), 2 ×2 ×2 mm(3), and 2 ×4 ×2 mm(3) in size are able to generate 2.48, 8.7, and 12.0 mW of electrical power, while irradiated at 1.15 and 2.3 MHz within FDA limits for medical imaging (peak acoustic intensity of 720 mW/cm(2)). The receivers have corresponding efficiencies of 0.4%, 1.7%, and 2.7%, respectively, at 20-cm powering distance. Due to the form factor and reflections from tissue-air boundaries, the output power stays constant to within 92% when the angular positions of the transmitter and receiver are varied around a cylindrical shell.