The identification and early warning of potential landslides can effectively reduce the number of casualties and the amount of property loss. At present, interferometric synthetic aperture radar (InSAR) is considered one of the mainstream methods for the large-scale identification and detection of potential landslides, and it can obtain long-term time-series surface deformation data. However, the method of identifying anomalous deformation areas using InSAR data is still mainly manual delineation, which is time-consuming, labor-consuming, and has no generally accepted criterion. In this study, a two-stage detection deep learning network (InSARNet) is proposed and used to detect anomalous deformation areas in Maoxian County, Sichuan Province. Compared with the most commonly used detection models, it is demonstrated that the InSARNet has a better performance in the detection of anomalous deformation in mountainous areas, and all of the quantitative evaluation indexes are higher for InSARNet than for the other models. After the anomalous deformation areas are identified using the proposed model, the possible relationship between the anomalous deformation areas and potential landslides is investigated. Finally, the fact that the automatic and rapid identification of potential landslides is the inevitable trend of future development is discussed.