The Wnt/β-catenin pathway plays important roles in the differentiation of multiple cell types, including mesenchymal stem cells. Using a cell-based chemical screening assay with a synthetic chemical library of 270 000 compounds, we identified the compound SKL2001 as a novel agonist of the Wnt/β-catenin pathway and uncovered its molecular mechanism of action. SKL2001 upregulated β-catenin responsive transcription by increasing the intracellular β-catenin protein level and inhibited the phosphorylation of β-catenin at residues Ser33/37/Thr41 and Ser45, which would mark it for proteasomal degradation, without affecting CK1 and GSK-3β enzyme activities. Biochemical analysis revealed that SKL2001 disrupted the Axin/β-catenin interaction, which is a critical step for CK1-and GSK-3β-mediated phosphorylation of β-catenin at Ser33/37/Thr41 and Ser45. The treatment of mesenchymal stem cells with SKL2001 promoted osteoblastogenesis and suppressed adipocyte differentiation, both of which were accompanied by the activation of Wnt/β-catenin pathway. Our findings provide a new strategy to regulate mesenchymal stem cell differentiation by modulation of the Wnt/β-catenin pathway.