Metal–organic frame (MOF) materials may have the advantages of a regular pore structure, large porosity, and large specific surface area, which could provide better catalytic activity, but they have some disadvantages in electrocatalysis. In contrast, carbon nanofibers (CNFs) prepared by electrospinning methods have good conductivity and stability. Therefore, this research aimed to generate MOF/CNFs composite materials to improve the electrochemical properties of MOF materials and apply them to the field of electrochemical sensing. This experiment was based on the preparation of straight unidirectional CNFs by an electrospinning method at 2000 RPM. The original method of preparing zeolitic imidazolate frameworks (ZIF-8) was improved and ZIF-8 was uniformly dispersed on the surface of CNFs to form a ZIF-8/CNF composite with a fiber diameter of about 0.10 to 0.35 µm. The specific surface area of the CNFs was about 42.28 m2/g, while that of the ZIF-8/CNF composite was about 999.82 m2/g. The specific surface area of the ZIF-8/CNF composite was significantly larger than that of CNFs. The GCE/ZIF-8/CNF electrode had an excellent electrochemical reaction, with an oxidation peak at about 216 μA, which proved that the ZIF-8/CNF composite material would have good catalytic activity and excellent electrochemical properties for the detection of nitrofurazone compared to other modified electrodes.