2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE) 2017
DOI: 10.1109/icitisee.2017.8285523
|View full text |Cite
|
Sign up to set email alerts
|

Wood identification based on histogram of oriented gradient (HOG) feature and support vector machine (SVM) classifier

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
2

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 36 publications
(18 citation statements)
references
References 12 publications
0
11
0
2
Order By: Relevance
“…In comparative studies of local features and textures (Table 4), SIFT and SURF had higher discriminative power than GLCM and LBP, whereas LPQ had similar discriminative power for local features [47,128]. Histograms of oriented gradients (HOG) [129] are descriptors that represent a local region of an image, and they have been used to classify macroscopic image datasets [130].…”
Section: Local Featurementioning
confidence: 99%
“…In comparative studies of local features and textures (Table 4), SIFT and SURF had higher discriminative power than GLCM and LBP, whereas LPQ had similar discriminative power for local features [47,128]. Histograms of oriented gradients (HOG) [129] are descriptors that represent a local region of an image, and they have been used to classify macroscopic image datasets [130].…”
Section: Local Featurementioning
confidence: 99%
“…Each cell builds a histogram of the gradient direction for each pixel inside it. [23] At the same time, the important features are obtained by calculating the HOG of the image local area and then the HOG algorithm is used to identify the target object to be detected. So far, HOG descriptors have been widely used for various computer vision problems.…”
Section: Histogram Of Oriented Gradients (Hog)mentioning
confidence: 99%
“…Pengenalan jenis kayu menggunakan fitur citra makroskopik lebih mudah diterapkan, sederhana dan fleksibel [6]. Tantangan utama fitur citra makroskopik adalah kemiripan tekstur antara satu jenis kayu dengan jenis kayu lainnya [7]. Telah banyak penelitian untuk mengidentifikasi jenis kayu menggunakan citra makroskopis dan mikroskopis.…”
Section: Pendahuluanunclassified
“…Pendekatan mereka mampu mencapai akurasi 91,47%. Sugiarto dkk melakukan pengenalan jenis kayu dari citra makroskopik menggunakan Histogram of Oriented Gradient (HOG) dan SVM Classifier [7]. Akurasinya adalah 70,5% untuk pengujian citra positif dan 77,5% untuk pengujian citra negatif.…”
Section: Pendahuluanunclassified