Supervised text classifiers require extensive human expertise and labeling efforts. In this paper, we propose a weakly supervised text classification algorithm based on the labeling of Latent Dirichlet Allocation (LDA) topics. Our algorithm is based on the generative property of LDA. In our algorithm, we ask an annotator to assign one or more class labels to each topic, based on its most probable words. We classify a document based on its posterior topic proportions and the class labels of the topics. We also enhance our approach by incorporating domain knowledge in the form of labeled words. We evaluate our approach on four real world text classification datasets. The results show that our approach is more accurate in comparison to semi-supervised techniques from previous work. A central contribution of this work is an approach that delivers effectiveness comparable to the state-of-the-art supervised techniques in hard-toclassify domains, with very low overheads in terms of manual knowledge engineering.