We investigate the passivation quality of hole‐collecting junctions consisting of thermally or wet‐chemically grown interfacial oxides, sandwiched between a monocrystalline‐Si substrate and a p‐type polycrystalline‐silicon (Si) layer. The three different approaches for polycrystalline‐Si preparation are compared: the plasma‐enhanced chemical vapor deposition (PECVD) of in situ p+‐type boron‐doped amorphous Si layers, the low pressure chemical vapor deposition (LPCVD) of in situ p+‐type B‐doped polycrystalline Si layers, and the LPCVD of intrinsic amorphous Si, subsequently ion‐implanted with boron. We observe the lowest J0e values of 3.8 fA cm−2 on thermally grown interfacial oxide on planar surfaces for the case of intrinsic amorphous Si deposited by LPCVD and subsequently implanted with boron. Also, we obtain a similar high passivation of p+‐type poly‐Si junctions on wet‐chemically grown oxides as well as for all the investigated polycrystalline‐Si deposition approaches. Conversely, on alkaline‐textured surfaces, J0e is at least 4 times higher compared to planar surfaces. This finding holds for all the junction preparation methods investigated. We show that the higher J0e on textured surfaces can be attributed to a poorer passivation of the p+ poly/c‐Si stacks on (111) when compared to (100) surfaces.