2017
DOI: 10.1063/1.4984526
|View full text |Cite
|
Sign up to set email alerts
|

Worldwide multi-model intercomparison of clear-sky solar irradiance predictions

Abstract: Abstract. Accurate modeling of solar radiation in the absence of clouds is highly important because solar power production peaks during cloud-free situations. The conventional validation approach of clear-sky solar radiation models relies on the comparison between model predictions and ground observations. Therefore, this approach is limited to locations with availability of high-quality ground observations, which are scarce worldwide. As a consequence, many areas of interest for, e.g., solar energy developmen… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(2 citation statements)
references
References 25 publications
(21 reference statements)
0
1
0
1
Order By: Relevance
“…Empirically based irradiance models need geometric parameters, such as solar zenith angle position, and/or key climatological parameters, such as sunshine duration, relative humidity, surface pressure, clearness of the atmosphere, and air temperature as input parameters [17,18], whereas broadband models need inputs that fully define the atmospheric state in detail, such as aerosol optical depth, amount of precipitable water, and ozone column [4,[19][20][21]. Specific atmospheric or meteorological characteristics are not always available or are of low quality, limiting the model outputs' accuracy [21,22]. GHI at the ground surface can also be accurately estimated using satellite images [23][24][25][26][27].…”
Section: Introductionmentioning
confidence: 99%
“…Empirically based irradiance models need geometric parameters, such as solar zenith angle position, and/or key climatological parameters, such as sunshine duration, relative humidity, surface pressure, clearness of the atmosphere, and air temperature as input parameters [17,18], whereas broadband models need inputs that fully define the atmospheric state in detail, such as aerosol optical depth, amount of precipitable water, and ozone column [4,[19][20][21]. Specific atmospheric or meteorological characteristics are not always available or are of low quality, limiting the model outputs' accuracy [21,22]. GHI at the ground surface can also be accurately estimated using satellite images [23][24][25][26][27].…”
Section: Introductionmentioning
confidence: 99%
“…Όμως, η απουσία πυκνών ακτινομετρικών δικτύων παγκοσμίως και τα χρονικά κενά στις χρονοσειρές της SSI δείχνoυν ότι, η μέτρηση των συνιστωσών της από επίγειους σταθμούς(μέθοδοςand Hansen, 1974;Laaroussi et al, 2016). Οι επίγειες μετρήσεις και οι δορυφορικές χρονοσειρές ή τα δεδομένα επανάλυσης θεωρούνται ως οι πιθανές επιλογές δεδομένων εισόδου, οι οποίες μπορούν να εισαχθούν στα εμπειρικά μοντέλα για τις εκτιμήσεις της GHI υπό ανέφελες συνθήκες(Janjai et al, 2011;Javadnia et al, 2017;Ruiz-Arias et al, 2017). Ειδικότερα, στην εργασία των, πραγματοποιήθηκαν εκτιμήσεις της GHI στην Καλιφόρνια, χρησιμοποιώντας τέτοιου τύπου μοντέλα, όπως το REST2 και δορυφορικά ατμοσφαιρικά δεδομένα εισόδου από το MODIS.…”
unclassified