We report on the electronic structure of poly[2,6-(4,4-bis- (2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)] (PCPDTBT), a promising low-band-gap donor material for efficient bulk heterojunction organic solar cells. Electronic properties of interfaces formed between PCPDTBT and prototypical electrodes [Au, indium-tin-oxide and poly(ethylene-dioxythiophene): poly(styrenesulfonate)], obtained from X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy, are evaluated. The formation of interface dipoles is observed, and their consequences for device performance are discussed. For the system PCPDTBT/Au chemical interactions occur, which may affect in particular the charge extraction at the corresponding interface.