This study explores the growth and structural characteristics of Nd2O3 layers on virtual germanium-rich SiGe substrates on Si(111). We focus on the emergence of the hexagonal phase depending on the stoichiometry of the virtual substrate. X-ray diffraction measurements reveal a hexagonal phase when Nd2O3 is grown directly on Si(111), while growth on Ge leads to a cubic oxide structure. On SiGe layers, the growth of the oxide results in a mixed phase containing hexagonal and cubic regions, regardless of the Ge content. The cubic structure grown on virtual Ge substrates exhibits strong tensile strain, while layers grown on SiGe layers show no strain. In situ growth control via electron diffraction shows a dependence of the oxide structure of the surface reconstruction of the virtual substrate. Growth on a 7×7 reconstruction leads to hexagonal parts on Si-based substrates, while growth on c(2×8) results in cubic oxide growth on Ge. Furthermore, oxide layers grown on virtual SiGe substrates form an interfacial silicate layer. The thickness of the interfacial layer is influenced by the Si content and the structure of the oxide layer enabling oxygen diffusion pathways.