We have fabricated GaAs/AlAs quantum wires and quantum dots by means of molecular beam epitaxy, electron beam lithography, and subsequent reactive ion etching using SiCl 4 and O 2 . The nominal periods are 300 nm and 350 nm for both wire and dot samples. High resolution x-ray reciprocal space maps of the 350 nm samples exhibit not only satellites corresponding to a periodicity of 350 nm but also additional satellites corresponding to a period of three times 350 nm, whereas there are no such extra peaks in the maps of the 300 nm samples. These secondary satellites are shown to be associated with a discretization effect in electron beam writing. Moreover, we found, that the shear strain in the wires has a distinct influence on the intensities of these weak extra satellites. Hence, they provide a sensitive means for the assessment of shear strains in elastically relaxed quantum wires.