2019
DOI: 10.3390/rs11030221
|View full text |Cite
|
Sign up to set email alerts
|

Xf-Rovim. A Field Robot to Detect Olive Trees Infected by Xylella Fastidiosa Using Proximal Sensing

Abstract: The use of remote sensing to map the distribution of plant diseases has evolved considerably over the last three decades and can be performed at different scales, depending on the area to be monitored, as well as the spatial and spectral resolution required. This work describes the development of a small low-cost field robot (Remotely Operated Vehicle for Infection Monitoring in orchards, XF-ROVIM), which is intended to be a flexible solution for early detection of Xylella fastidiosa (X. fastidiosa) in olive g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
19
0
5

Year Published

2019
2019
2023
2023

Publication Types

Select...
4
4
2

Relationship

3
7

Authors

Journals

citations
Cited by 38 publications
(24 citation statements)
references
References 29 publications
0
19
0
5
Order By: Relevance
“…Although weather radars have detected mass migrations of invasive insects [17], as yet remotely sensed data cannot directly characterize IAVP geographical distributions. There are promising proximal sensing methods that use reflectance data from cameras that can detect and differentiate between multiple fruit fly species, including those that vector crop pathogens [18] (see also [19] for an interesting application of proximal sensing of an invasive pathogenic plant bacterium). However, mapping IAVP distribution in real-time is often less desirable than preempting the potential geographic distribution, as surveillance and control are more efficient if implemented prior to the establishment of a species [11,12,20].…”
Section: Linking Environmental Earth Data and Iavpsmentioning
confidence: 99%
“…Although weather radars have detected mass migrations of invasive insects [17], as yet remotely sensed data cannot directly characterize IAVP geographical distributions. There are promising proximal sensing methods that use reflectance data from cameras that can detect and differentiate between multiple fruit fly species, including those that vector crop pathogens [18] (see also [19] for an interesting application of proximal sensing of an invasive pathogenic plant bacterium). However, mapping IAVP distribution in real-time is often less desirable than preempting the potential geographic distribution, as surveillance and control are more efficient if implemented prior to the establishment of a species [11,12,20].…”
Section: Linking Environmental Earth Data and Iavpsmentioning
confidence: 99%
“…Por otro lado, la reducción de precios y la miniaturización hacen que los sistemas aéreos no tripulados (UAV) sean cada vez más populares para una rápida monitorización a nivel de cultivo en cualquier momento. A nivel de hoja, la información espectral se puede recopilar con una alta resolución espacio-temporal utilizando sensores manuales o montados en vehículos agrícolas [4]. Este trabajo tiene como objetivo ayudar en la detección temprana de cultivos infectados por CaLsol a nivel de planta y cultivo, utilizando sensores de detección proximal de alta resolución montados en un robot eléctrico diseñado y desarrollado a medida para este fin.…”
Section: Congreso Ibérico De Agroingeniería X Congresso Ibérico De unclassified
“…Este trabajo presenta el desarrollo de un robot de campo, XF-ROVIM [5], que incorpora equipos para el sensado remoto. Este robot se está utilizando para la detección temprana de Xf y se ha probado en campos de olivos potencialmente infectados por Xf en la región de Apulia (Italia).…”
Section: Congreso Ibérico De Agroingeniería X Congresso Ibérico De unclassified