Composites in TribologyPolymer composites are well known for offering engineers high strength-to-weight ratios and flexibility in material design. [1,2] The physical properties of a composite can be tuned to satisfy various functional requirements of a target application, including stiffness and strength, thermal and electrical transport, and wear resistance to name a few. Often, composites are designed to fulfill several functions simultaneously.One area of engineering that is particularly invested in the development and design of high performance polymer composites is tribology, the science related to interacting surfaces in relative motion. Bearings are systems that contain sliding interfaces, and are relied upon by nearly all moving mechanical systems. Though rarely recognized,
Feature ArticlePolymer nanocomposites operate in applications where fluid and grease lubricants fail, and have superior tribological performance to traditional polymer composites. Nanoparticle fillers have been a part of notable reductions in the wear rate of the polymer matrix at very low loadings. Despite instances of remarkable wear reductions at unprecedented loadings (3 000 times at 0.5% loading in one case), there is a lack of general agreement within the literature on the mechanisms of wear resistance in these nanocomposites. In addition, results appear to vary widely from study to study with only subtle changes of the filler material or blending technique. The apparent wide variation in tribological results is likely a result of processing and experimental differences. Tribology is inherently complex with no governing laws for dry sliding friction or wear, and the state of the art in polymeric nanocomposites tribology includes many qualitative descriptors of important system parameters, such as particle dispersion, bulk mechanical properties, debris morphology, and transfer film adhesion, morphology, composition, and chemistry. The coupling of inherent tribological complexities with the complicated mechanics of poorly characterized nanocomposites makes interpretation of experimental results and the state of the field extremely difficult. This paper reviews the state of the art in polymeric nanocomposites tribology and highlights the need for more quantitative studies. Examples of such quantitative measurements are given from recent studies, which mostly involve investigation of polytetrafluoroethylene matrix nanocomposites.