The effects of pH profile and “soft template” during aniline chemical oxidative polymerization (COP) were investigated and evaluated simultaneously with diethylene triamine pentaacetic acid (DTPA) as a structural directing agent. Formation of PANI nanotubes and nanoparticles, smooth microspheres, and urchin‐like microspheres were illustrated by evaluating the pH profile during aniline COP while considering the “soft template” effects of DTPA. PANI nanosheets with two semicurled edges were found in the system producing nanotubes, which provides an evidence for the “curling mechanism” of PANI nanotube formation. With different pH profiles, chemical structures and aggregation structures of the as‐synthesized PANI micro/nanostructures are similar, whereas their conductivity, wettability, Cr (VI) adsorption, and electrochemical behaviors are distinct. The present study indicates that if properly conducted, pH profile adjustment is more effective than “soft template” to control the morphology and to optimize the performance of PANI micro/nanostructures. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42403.