In several cases, it is desirable to have prototypes of low-cost fabrication and adequate performance. In academic laboratories and industries, miniature and microgrippers can be very useful for observations and the analysis of small objects. Piezoelectrically actuated microgrippers, commonly fabricated with aluminum, and with micrometer stroke or displacement, have been considered as Microelectromechanical Systems (MEMS). Recently, additive manufacture using several polymers has also been used for the fabrication of miniature grippers. This work focuses on the design of a piezoelectric-driven miniature gripper, additive manufactured with Acrylonitrile Butadiene Styrene (PLA), which was modeled using a pseudo rigid body model (PRBM). It was also numerically and experimentally characterized with an acceptable level of approximation. The piezoelectric stack is composed of widely available buzzers. The aperture between the jaws allows it to hold objects with diameters lower than 500 mm, and weights lower than 1.4 g, such as the strands of some plants, salt grains, metal wires, etc. The novelty of this work is given by the miniature gripper’s simple design, as well as the low-cost of the materials and the fabrication process used. In addition, the initial aperture of the jaws can be adjusted, by adhering the metal tips in the required position.