We report an initial experimental survey of spin-Hall torques generated by the rare-earth metals Gd, Dy, Ho, and Lu, along with comparisons to first-principles calculations of their spin Hall conductivities. Using spin torque ferromagnetic resonance (ST-FMR) measurements and DC-biased ST-FMR, we estimate lower bounds for the spin-Hall torque ratio, ξSH, of ≈ 0.04 for Gd, ≈ 0.05 for Dy, ≈ 0.14 for Ho, and ≈ 0.014 for Lu. The variations among these elements are qualitatively consistent with results from first principles (density functional theory, DFT, in the local density approximation with a Hubbard-U correction). The DFT calculations indicate that the spin Hall conductivity is enhanced by the presence of the partially-filled f orbitals in Dy and Ho, which suggests a strategy to further strengthen the contribution of the f orbitals to the spin Hall effect by shifting the electron chemical potential.