2020
DOI: 10.31590/ejosat.778789
|View full text |Cite
|
Sign up to set email alerts
|

Yapay Sinir Ağı Kullanılarak Anomali Tabanlı Saldırı Tespit Modeli Uygulaması

Abstract: Öz Her geçen gün internetin yaygınlaşması ve buna bağlı olarak ağa bağlanan cihazların hızlı bir şekilde artması, bazı avantajlarının yanında birçok sorunu da beraberinde getirmektedir. Bu sorunlardan en önemlisi siber tehditlerdir. Kişilere, kurumlara ve devletlere karşı siber tehditler, maddi, itibar ve zaman gibi kayıplar verebilmektedir. Saldırı tespit ve saldırı önleme sistemleri, bu kayıpları ortadan kaldırmak veya en aza indirilebilmek için kullanılmaktadır. Saldırı tespit sistemleri imza tabanlı veya a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
1
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 18 publications
0
1
0
1
Order By: Relevance
“…The results showed an achievement rate of 98.32% on the CIC IDS2018 dataset and a rate of 98.8% on the CIC IDS2018+Synthetic dataset. In another study by Karaman et al [5], where they implemented the Artificial Neural Networks approach on the CIC IDS2018 dataset. The study yielded impressive results, with threat detection accuracy reaching 99.11%, botnet attack detection accuracy at 93.23%, DDoS attack detection accuracy at 99.31%, DoS attack detection accuracy at 92.26%, and BruteForce attack detection accuracy at 99.26%.…”
Section: Related Workmentioning
confidence: 99%
“…The results showed an achievement rate of 98.32% on the CIC IDS2018 dataset and a rate of 98.8% on the CIC IDS2018+Synthetic dataset. In another study by Karaman et al [5], where they implemented the Artificial Neural Networks approach on the CIC IDS2018 dataset. The study yielded impressive results, with threat detection accuracy reaching 99.11%, botnet attack detection accuracy at 93.23%, DDoS attack detection accuracy at 99.31%, DoS attack detection accuracy at 92.26%, and BruteForce attack detection accuracy at 99.26%.…”
Section: Related Workmentioning
confidence: 99%
“…In another implementation performed by using artificial neural networks, an anomaly-based intrusion detection system was designed on the CSE-CIC-IDS2018 dataset. The detection accuracy of the recommended system was revealed at the end of the study according to the types of attacks within the dataset (Karaman, Turan, & Aydın, 2020). In the hybrid model developed by Sun et al by using convolution neural network and long short-term memory (LSTM), category weight optimization method was used.…”
Section: Related Workmentioning
confidence: 99%
“…Çalışmalarında DDOS, Botnet, DOS, BruteForce türündeki saldırıları ele alınmış olup inceledikleri veri setinde DDOS ve BruteFroce saldırıların diğer iki türe göre daha yüksek oranda geldiği tespit edilmiştir. Kurdukları sistemin başarısının ise %99, 26 gibi bir yüksek tahmin oranına sahip olduğu görülmüştür [26].…”
Section: Türki̇ye' De Si̇ber Suçlar Ve çöZüm Yöntemleri̇ üZeri̇ne Li̇teratür Taramasiunclassified