Öz Her geçen gün internetin yaygınlaşması ve buna bağlı olarak ağa bağlanan cihazların hızlı bir şekilde artması, bazı avantajlarının yanında birçok sorunu da beraberinde getirmektedir. Bu sorunlardan en önemlisi siber tehditlerdir. Kişilere, kurumlara ve devletlere karşı siber tehditler, maddi, itibar ve zaman gibi kayıplar verebilmektedir. Saldırı tespit ve saldırı önleme sistemleri, bu kayıpları ortadan kaldırmak veya en aza indirilebilmek için kullanılmaktadır. Saldırı tespit sistemleri imza tabanlı veya anomali tabanlı olarak tasarlanmakta ve günümüzde anomali tabanlı sistemler makine öğrenmesi yöntemleri kullanılarak geliştirilmektedir. Bu çalışmanın amacı, bir bilgisayar ağına saldırı olup olmadığını yüksek başarı oranı ile tespit etmenin yanı sıra, hangi saldırı türünün sisteme zarar vermeye çalıştığını da ayırt edebilen anomali tabanlı bir saldırı tespit sistemi tasarlamaktır. Bu sistemi geliştirmek için makine öğrenmesi yöntemlerinden olan yapay sinir ağları kullanılmıştır. Sistemin geçerliliğini sınamak üzere CSE-CIC-IDS2018 veri seti kullanılmıştır. Tehdit türleri olarak, yaygın sıklıkta karşılaşılan Botnet, DDOS, DOS, BruteForce saldırıları ele alınmıştır. Yapılan doğruluk sınamaları sonucunda, gelen bir paketin tehdit olup olmadığı %99.11 gibi çok yüksek bir başarım oranında doğru bulunmuştur. Ayrıca gelen tehdidin Botnet olduğu %93.23, DDOS olduğu %99.31, DOS olduğu %92.26 ve BruteForce olduğu %99.26 oranında doğru şekilde tespit edilmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.