Yps1p is a member of the GPI-anchored aspartic proteases which reside at the plasma membrane of Saccharomyces cerevisiae. Here we show that in Delta erg6 cells, where a late biosynthetic step of the membrane lipid ergosterol is blocked, part of Yps1p was targeted to the vacuole. There it overtook proteolytic functions of the Pep4p protease, resulting in processing of pro-CPY to CPY in cells lacking the PEP4 gene. Yps1p was enriched in membrane microdomains, as it could be isolated in detergent-insoluble complexes from both normal and Delta erg6 cells. Vacuolar Yps1 caused degradation of a mammalian sialyltransferase ectodomain fusion protein (ST6Ne), which was directed from the Golgi to the vacuole in both normal and Delta erg6 cells. Unexpectedly, ST6Ne was degraded also when arrested in the Golgi in a temperature-sensitive sec7-1 mutant. Newly synthesized Yps1p, in transit to the plasma membrane, was also involved in the Golgi-associated degradation. These data show that GPI-anchored proteases, whose biological roles are unknown, may reside and function in different subcellular locations.