“…The high toxicity of endogenously produced ethanol reduces cell viability, growth rate, and fermentation rate. Many mechanisms have been developed to help organisms withstand and/or prevent ethanol-induced damage during fermentation, including crossstress protection; yeast hybrids based on enological characterization (Belloch et al, 2008); membrane remodeling via changes in membrane (palmitoleic acid, oleic acid, and ergosterol) and cell wall composition (fatty acid, lipid, and isoprenoid metabolism); accumulation of amino acids (proline and tryptophan) and storage solutes (trehalose and glycogen) (Zhao and Bai, 2009); expression of molecular chaperones; transcriptional activation of V-ATPase and peroxisomal functions; enhancement of NADPH regeneration and redox balance (Cebollero et al, 2007;Ding et al, 2009;Orozco et al, 2012); genetic improvement through sexual cycle, parasexual hybridization and genetic engineering; and transcriptome remodeling of transcription factors, stress-related genes, and genes involved in signal transduction (Gibson et al, 2007;Ma and Liu, 2010a;Stanley et al, 2010). However, this approach has the intrinsic limitation that yeast adapts to different metabolic environments such as a high concentration of ethanol during fermentation.…”