During brewery handling, production strains of yeast must respond to fluctuations in dissolved oxygen concentration, pH, osmolarity, ethanol concentration, nutrient supply and temperature. Fermentation performance of brewing yeast strains is dependent on their ability to adapt to these changes, particularly during batch brewery fermentation which involves the recycling (repitching) of a single yeast culture (slurry) over a number of fermentations (generations). Modern practices, such as the use of high-gravity worts and preparation of dried yeast for use as an inoculum, have increased the magnitude of the stresses to which the cell is subjected. The ability of yeast to respond effectively to these conditions is essential not only for beer production but also for maintaining the fermentation fitness of yeast for use in subsequent fermentations. During brewery handling, cells inhabit a complex environment and our understanding of stress responses under such conditions is limited. The advent of techniques capable of determining genomic and proteomic changes within the cell is likely vastly to improve our knowledge of yeast stress responses during industrial brewery handling.
Commercial brewing yeast strains are exposed to a number of potential stresses including oxidative stress. The aim of this investigation was to measure the physiological and transcriptional changes of yeast cells during full-scale industrial brewing processes with a view to determining the environmental factors influencing the cell's oxidative stress response. Cellular antioxidant levels and genome-wide transcriptional changes were monitored throughout an industrial propagation and fermentation. The greatest increase in cellular antioxidants and transcription of antioxidant-encoding genes occurred as the rapidly fermentable sugars glucose and fructose were depleted from the growth medium (wort) and the cell population entered the stationary phase. The data suggest that, contrary to expectation, the oxidative stress response is not influenced by changes in the dissolved oxygen concentration of wort but is initiated as part of a general stress response to growth-limiting conditions, even in the absence of oxygen. A mechanism is proposed to explain the changes in antioxidant response observed in yeast during anaerobic fermentation. The available data suggest that the yeast cell does not experience oxidative stress during industrial brewery handling. This information may be taken into consideration when setting parameters for industrial brewery fermentation.
Scatterplot matrix with data histograms and Spearman rank correlation coefficients for base 10 logarithm transformations of Escherichia coli bacteria densities, streamflow, water temperature, and turbidity in water samples collected from the Chattahoochee River near Norcross, Georgia,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.