National Oceanic and Atmospheric Administration (NOAA)-series satellites, carrying advanced very high-resolution radiometer (AVHRR) sensors, have allowed moderate resolution (1 km) measurements of the normalized difference vegetation index (NDVI) to be collected from the Earth's land surfaces for over 20 years. Across the conterminous USA, a readily accessible and decade-long data set is now available to study many aspects of vegetation activity in this region. One feature, the onset of deciduous plant growth at the start of the spring season (SOS) is of special interest, as it appears to be crucial for accurate computation of several important biospheric processes, and a sensitive measure of the impacts of global change.In this study, satellite-derived SOS dates produced by the delayed moving average (DMA) and seasonal midpoint NDVI (SMN) methods, and modelled surface phenology (spring indices, SI) were compared at widespread deciduous forest and mixed woodland sites during 1990-93 and 1995-99, and these three measures were also matched to native species bud-break data collected at the Harvard Forest (Massachusetts) over the same time period. The results show that both SOS methods are doing a modestly accurate job of tracking the general pattern of surface phenology, but highlight the temporal limitations of biweekly satellite data. Specifically, at deciduous forest sites: (1) SMN SOS dates are close in time to SI first bloom dates (average bias of +0.74 days), whereas DMA SOS dates are considerably earlier (average bias of −41.24 days) and also systematically earlier in late spring than in early spring; (2) SMN SOS tracks overall yearly trends in deciduous forests somewhat better than DMA SOS, but with larger average error (MAEs 8.64 days and 7.37 days respectively); and (3) error in both SOS techniques varies considerably by year.