Let Γ(ℤn[i]) be the zero divisor graph for the ring of the Gaussian integers modulo n. Several properties of the line graph of Γ(ℤn[i]), L(Γ(ℤn[i])) are studied. It is determined when L(Γ(ℤn[i])) is Eulerian, Hamiltonian, or planer. The girth, the diameter, the radius, and the chromatic and clique numbers of this graph are found. In addition, the domination number of L(Γ(ℤn[i])) is given when n is a power of a prime. On the other hand, several graph invariants for Γ(ℤn[i]) are also determined.