Partitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design a feedforward control term for improving the tracking accuracy of the desired references. In addition, consideration of actuator dynamics is important for a robot with high-velocity movement and highly varying loads. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. Three actuator control modes are considered in this study: (i) a torque control mode in which the armature current is well controlled by a current servo amplifier and the motor torque/current constant is known, (ii) a current control mode in which the torque/current constant is unknown, and (iii) a voltage control mode with no current servo control being available. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Two case studies are used to prove the validity of the proposed controller: a two-link manipulator and a six-link biped robot.