The present study examines the role of insulin, glucagon and cortisol in the regulation of gluconeogenesis from lactate and amino acids in fetal and newborn rats. Injection of glucagon in the full-term fetal rat caused a rise in glucose (and insulin) and a fall in blood levels of most individual amino acids, stimulated hepatic accumulation of 14C-amino isobutyric acid and 14C-cycloleucine and increased the conversion of 14C lactate, alanine and serine to glucose in vivo and in vitro (liver slices). Such changes were equivalent to the changes seen in 4 h old newborn rats. When glucagon was administered at birth, little difference was observed between control and treated animals in plasma amino acids and a smaller increment in conversion of 14C substrate to glucose occurred. By contrast, insulin injection at birth caused hypoglycemia, suppression of levels of certain amino acids and inhibition of conversion of 14C substrates into glucose. Glucose injection at birth caused elevated glycemia and plasma insulin and suppression of most amino acid levels and of conversion of 14C substrate into glucose. Cortisol injection at birth caused a marked, generalized by hyperaminoacidemia, a stimulation of glucagon secretion and of conversion of 14C substrates into glucose. These observations support the thesis that glucagon plays a major role in the induction of hepatic gluconeogenesis and that insulin acts as an antagonist hormone.