Artificial synapse devices can simulate the neuro-transmission in a completely electronic way, but the neuro-biochemical responses are still a challenge for them. Here, a novel three-terminal (3T) neuro-receptor-mediated (acetylcholine receptor (AChR) as a proof-of-concept) synapse device (NR-S) based on the solution-MXene interface is presented. It is demonstrated that the synaptic plasticity behavior triggered by neuro-transmitter (ACh) and the pathogenic autoantibody (AChR-ab) induced neuronal damage that can be detected and recorded. The improved sensitivities, including the linear responses to ACh in an extremely wide range (1 am to 1 µm) and ultra-low (1 am) limit of detection, are obtained using crumpled MXene. Furthermore, the ability of the proposed NR-S to determine the tiny neuronal injury caused by only 10 ng mL −1 AChR-ab is conceptually proven. Collectively, the novel 3T NR-S has good application prospects in the field of the neuromorphic chip for not only realizing the bionic simulation of the chemically modulated or injured neuro-transmission but also offering an efficient experimental platform for neuro-biochemistry studies.