Reinforced concrete (RC) columns are often placed under confinement to increase their strength and ductility. Carbon fiber reinforced polymer (CFRP) materials have recently been recognized as favorable confinement systems. At present, a number of national standards and codes dedicated to the design of concrete components strengthened with CFRP in general and CFRP confinement in particular are available. These sets of rules provide design equations for confined reinforced concrete columns with circular and rectangular cross sections. Most of the standards and codes exhibit significant differences, including the used predictive models, limitations, observed effects and covered loading conditions. In this paper, five international standards and design guidelines are introduced and discussed. The purpose is to present a constructive and critical assessment of the state-of-the-art design methodologies available for CFRP confined RC columns and to discuss effects not previously considered properly. Therefore, some recent research efforts and findings from the Leipzig University of Applied Sciences are also introduced. The obtained data is used for a comparative study of the guideline predictive equations. Furthermore, it is shown that some new findings concerning the rupture strength and the maximum strength plus accompanying axial strain of a CFRP confined column are suitable to improve the current guidelines.