The development of the functional components of the myocardial capillary wall was characterized by time-course studies of transendothelial transport of intravascularly injected probes of graded size from 16 days of gestation in the fetal rat to seven days postpartum. Despite the morphological changes occurring in the developing endothelial cells, the interaction of the probes was similar throughout the developmental period studied. The carbon particles were retained within the capillary lumina without any association with interendothelial junctions or with plasmalemmal vesicles. Carbon also was associated with coated vesicles. In contrast to carbon, ferritin was localized sequentially, over 60 sec of circulation, in plasmalemmal vesicles on the lumenal surface, in the cytoplasm, and on the ablumenal surface of the endothelial cells as well as in the interstitial space. Ferritin was located also in coated pits and vesicles and, after 90 sec of circulation, in multivesicular bodies. Within 30 sec of circulation, reaction product of myoglobin was located in plasmalemmal vesicles, coated vesicles, and transendothelial cell channels. Also within 30 sec, myoglobin partially filled the interendothelial space from the capillary lumina to the level of the tight junction. At all developmental ages studied, the interendothelial cell junctions appeared structurally tight and were impermeable to all of the probes. Once ferritin or myoglobin had reached the ablumenal space, the basal lamina did not appear to restrain the passage of the probes. Plasmalemmal vesicles are the capillary structures which transendothelially transport ferritin and myoglobin in developing myocardial capillaries.