An experimental study is conducted on a pilot-scale zigzag air separator (ZZS) to study the effects of varying the solid feed mass stream, the mean channel air velocity, and the number of channel segments onto the grade efficiency. Spherical glass beads are classified. A straight pipe separator model (PSM) is modified for the ZZS and fitted to the experimental data to estimate the relative cutpoint settling velocity, the separation sharpness, the relative rise velocity, the diffusion coefficient, and the particle loading. The proposed model is thoroughly investigated with regard to all important parameters, e.g. the estimated particle loading is shown to be more precise than the ratio of the solid and air mass stream, used in many publications. Finally, the relative rise velocity is shown to be only a function of the particle loading, making the experimental results within the model collapse.