A xylan-based antimicrobial additive agent was prepared and studied for use in paper products against Escherichia coli bacteria. The derived cationic-xylan-grafted-guanidine polymer (CX-g-PHGH) was successfully synthesized by graft copolymerization of cationic-xylan with polyhexa-methylene guanidine hydrochloride (PHGH) using ceric ammonium nitrate as an initiator. The obtained CX-g-PHGH had a maximum PHGH grafting ratio of 18.4% and efficiency of 58.4% and showed good viscosity and thermal stability. Furthermore, the paper samples prepared in this work were reinforced noticeably with the addition of CX-g-PHGH, after which exhibited improved mechanical properties. Compared to the reference paper without any of the xylan derivatives, the index of tensile, tear, burst, and folding endurance of the paper were increased by up to 20.1%, 25.3%, 30.2%, and 77.8%, respectively. Moreover, the prepared CX-g-PHGH paper exhibited efficient antimicrobial barrier properties against E. coli bacteria, by which many applications based on the new xylan derived additive agent obtained in this work could be found, especially in field of antimicrobial paper products against E. coli bacteria from contaminated food.