The effect of oxygen annealing on the excess conductivity of Cu0.5Tl0.25M0.25Ba2Ca2Cu3O10−δ (M = K, Na, Li, Tl) samples is investigated. From the analysis of results, we have evaluated the exponents, the coherence length, the crossover temperature, and interlayer coupling strength (J) of the samples. These studies show that the K-doped post-annealed sample has shown narrow transition width with improvement in 2D and 3D conductivities. Oxygen annealing has also enhanced the coherence length and interlayer coupling strength of the material. Na- and Li-doped post-annealed samples have shown increased transition width, poor 2D and 3D conductivities within narrow temperature windows. After annealing, reduction in coherence length and the interlayer coupling strength is also observed. While in Tl-doped sample, oxygen annealing has not caused much deviation in fluctuation induced conductivity (FIC) parameters. The underlying cause of improved behavior of post-annealed K-doped sample is also discussed.