Galectin-3 is considered a cancer biomarker and bioindicator of fibrosis and cardiac remodeling, and, therefore, it is desirable to develop convenient methods for its detection. Herein, an approach based on the development of multivalent electrochemical probes with high galectin-3 sensing abilities is reported. The probes consist of multivalent presentations of lactose-ferrocene conjugates scaffolded on poly(amido amine) (PAMAM) dendrimers and gold nanoparticles. Such multivalent lactose-ferrocene conjugates are synthesized by coupling of azidomethylferrocene-lactose building blocks on alkyne-functionalized PAMAM, for the case of the glycodendrimers, and to disulfide-functionalized linkers that are then used for the surface modification of citrate-stabilized gold nanoparticles. The binding and sensing abilities towards galectin 3 of both ferrocene-containing lactose dendrimers and gold nanoparticles have been evaluated by means of isothermal titration calorimetry, UV-vis spectroscopy, and differential pulse voltammetry. The highest sensitivity by electrochemical methods to galectin-3 was shown by lactosylferrocenylated gold nanoparticles, which are able to detect the lectin in nanomolar concentrations.