Background
Alcohol exposure has adverse effects on stress physiology and behavioral reactivity. This is suggested to be due, in part, to the effect of alcohol on β-endorphin (β-EP) producing neurons in the hypothalamus. In response to stress, β-EP normally provides negative feedback to the HPA axis and interacts with other neurotransmitter systems in the amygdala to regulate behavior. We examined whether β-EP neuronal function in the hypothalamus reduces the corticosterone response to acute stress, attenuates anxiety-like behaviors, and modulates alcohol drinking in rats.
Methods
To determine if β-EP neuronal transplants modulate the stress response, anxiety behavior and alcohol drinking, we implanted differentiated β-EP neurons into the paraventricular nucleus of the hypothalamus (PVN) of normal, prenatal alcohol exposed, and alcohol-preferring (P) and non-preferring (NP) rats. We then assessed corticosterone levels in response to acute restraint stress and other markers of stress response in the brain, and anxiety-like behaviors in the elevated plus maze and open-field assays.
Results
We showed that β-EP neuronal transplants into the PVN reduced the peripheral corticosterone response to acute stress and attenuated anxiety-like behaviors. Similar transplants completely reduced the hyper-corticosterone response and elevated anxiety behaviors in prenatal alcohol exposed adult rats. Moreover, we showed that β-EP reduced anxiety behavior in P rats with minimal effects on alcohol drinking during and following restraint stress.
Conclusions
These data further establish a role of β-EP neurons in the hypothalamus for regulating physiological stress response and anxiety behavior, and resembles a potential novel therapy for treating stress-related psychiatric disorders in prenatal alcohol exposed children and those genetically predisposed to increased alcohol consumption.