Neuroin ammation is involved in a wide range of brain disorders, thus there is great interest in identifying novel anti-in ammatory agents to include in therapeutic strategies. We previously determined that lipopolysaccharide (LPS)-induced sickness behavior and neuroin ammation in mice are prevented by pretreatment with beta-funaltrexamine (β-FNA), a selective mu-opioid receptor (MOR) antagonist. Herein we investigated the temporal importance of β-FNA treatment in this pre-clinical model of LPS-induced neuroin ammation. Adult, male C57BL/6J mice were administered LPS followed by treatment with β-FNA immediately or 4 h post-LPS. Sickness behavior was assessed using an open-eld test, followed by assessment of in ammatory signaling in the brain, spleen, and plasma. Levels of in ammatory chemokines/cytokines (interferon γ-induced protein, CXCL10; monocyte chemotactic protein 1, CCL2; and interleukin-6, IL-6) in tissues were measured using an enzyme-linked immunosorbent assay and nuclear factor-kappa B (NFκB), p38 mitogen activated kinase (p38 MAPK), and glial brillary acidic protein (GFAP) expression were measured by western blot. LPS-induced sickness behavior and chemokine expression were inhibited more effectively when β-FNA treatment occurred immediately after LPS administration, as opposed to 4 h post-LPS; and β-FNA-mediated effects were time-dependent as evidenced by inhibition at 24 h, but not at 8 h. The inhibitory effects of β-FNA on chemokine expression were more evident in the brain versus the spleen or plasma. LPS-induced NFκB-p65 and p38 MAPK expression in the brain and spleen were inhibited at 8 and 24 h post-LPS. These ndings extend our understanding of the anti-in ammatory effects of β-FNA and warrant further investigation into its therapeutic potential.