Background
γ-aminobutyric acid (GABA), as a regulator of many aspects of plant growth, has a pivotal role in improving plant stress resistance. However, few studies have focused on the use of GABA in increasing plants’ resistance to interactional stresses, such as drought-salinity. Therefore, the focus of this study was to examine the effect of foliar application of GABA (0, 10, 20, and 40 mM) on growth indices and physio-biochemical parameters in plants of two pomegranate cultivars, ‘Rabab’ and ‘Atabaki’ exposed to drought, salinity, and drought-salinity.
Results
Under stress conditions, the photosynthetic capacity of two pomegranate cultivars, including transpiration rate, net photosynthetic rate, intercellular carbon dioxide concentration, stomatal conductance of water vapour, and mesophyll conductance, was significantly reduced. This resulted in a decrease in root morphological traits such as fresh and dry weight, diameter, and volume, as well as the fresh and dry weight of the aerial part of the plants. However, the application of GABA reversed the negative effects caused by stress treatments on growth parameters and maintained the photosynthetic capacity. GABA application has induced the accumulation of compatible osmolytes, including total soluble carbohydrate, starch, glucose, fructose, and sucrose, in charge of providing energy for cellular defense response against abiotic stresses. Analysis of mineral nutrients has shown that GABA application increases the absorption of potassium, potassium/sodium, magnesium, phosphorus, manganese, zinc, and iron. As concentration increased up to 40 mM, GABA prevented the uptake of toxic ions, sodium and chloride.
Conclusions
These findings highlight the potential of GABA as a biostimulant strategy to enhance plant stress tolerance.