The well-known adverse effects of CO (carbon monoxide) intoxication are counterbalanced by its positive actions when small amounts are produced intracellularly by the cytoprotective enzyme HO-1 (haem oxygenase-1). As compelling scientific evidence accumulated to sustain that HO-1 plays a fundamental role in counteracting vascular and inflammatory disorders, we began to appreciate that a controlled delivery of CO to mammals may provide therapeutic benefits in a number of pathological states. This is the rationale for the recent development of CO-RMs (CO-releasing molecules), a group of compounds capable of carrying and liberating controlled quantities of CO in cellular systems, which offer a plausible tool for studying the pharmacological effects of this gas and identifying its mechanism(s) of action. The present review will highlight the encouraging results obtained so far on the vasodilatory, anti-ischaemic and anti-inflammatory effects elicited by CO-RMs in in vitro and in vivo models with an emphasis on the prospect of converting chemical CO carriers into CO-based pharmaceuticals.