We describe operating priciples and results obtained with a new detector component: the Gas Electrons Multiplier (GEM). Consisting of a thin composite sheet with two metal layers separated by a thin insulator, and pierced by a regular matrix of open channels, the GEM electrode, inserted on the path of electrons in a gas detector, allows to transfer the charge with an amplification factor approaching ten. Uniform response and high rate capability are demonstrated. Coupled to another device, multiwire or micro-strip chamber, the GEM electrode permit to obtain higher gains or less critical operation; separation of the sensitive (conversion) volume and the detection volume has other advantages, as a built-in delay (useful for triggering purposes) and the possibility of applying high fields on the photocathode of ring imaging detectors to improve efficiency.Multiple GEM grids in the same gas volume allow to obtain large amplification factors in a succession of steps, leading to the realization of an effective gas-filled photomultiplier.
AbstractWe describe operating principles and results obtained with a new detector element: the Gas Electrons Multiplier (GEM) [1]. Consisting of a thin composite sheet with two metal layers separated by a thin insulator, and pierced by a regular matrix of open channels, the GEM electrode, inserted on the path of electrons in a gas detector, allows to transfer the charge with an amplification factor approaching ten. Uniform response and high rate capability are demonstrated. Coupled to another device, multiwire or micro-strip chamber, the GEM electrode permits to obtain higher gains or less critical operation; separation of the sensitive (conversion) volume and the detection volume has other advantages: a built-in delay (useful for triggering purposes), and the possibility of applying high fields on the photo-cathode of ring imaging detectors to improve efficiency.Multiple GEM grids in the same gas volume allow to obtain large amplification factors in a succession of steps, leading to the realization of an effective gas-filled photomultiplier.