Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Abstract. We show a Riemann-Roch theorem for group ring bundles over an arithmetic surface; this is expressed using the higher adeles of Beilinson-Parshin and the tame symbol via a theory of adelic equivariant Chow groups and Chern classes. The theorem is obtained by combining a group ring coefficient version of the local Riemann-Roch formula as in Kapranov-Vasserot with results on K-groups of group rings and an explicit description of group ring bundles over P 1 . Our set-up provides an extension of several aspects of the classical Fröhlich theory of the Galois module structure of rings of integers of number fields to arithmetic surfaces. ContentsIntroduction §1. Beilinson-Parshin adeles on a surface §2. Equivariant adelic Chow groups §3. Lattices, determinant functors and determinant theories §4. Pushdown maps and reciprocity laws §5. Transition matrices and the first Chern class §6. Elementary structures and the second Chern class §7. Equivariant Euler characteristics and the Riemann-Roch theorem §8. The proof of the theorem; reduction to the case of P 1 Z §9. The proof of the theorem; bundles over P 1 Z §10. Appendix: Adelic Riemann-Roch for general bundles when G = 1 References
Abstract. We show a Riemann-Roch theorem for group ring bundles over an arithmetic surface; this is expressed using the higher adeles of Beilinson-Parshin and the tame symbol via a theory of adelic equivariant Chow groups and Chern classes. The theorem is obtained by combining a group ring coefficient version of the local Riemann-Roch formula as in Kapranov-Vasserot with results on K-groups of group rings and an explicit description of group ring bundles over P 1 . Our set-up provides an extension of several aspects of the classical Fröhlich theory of the Galois module structure of rings of integers of number fields to arithmetic surfaces. ContentsIntroduction §1. Beilinson-Parshin adeles on a surface §2. Equivariant adelic Chow groups §3. Lattices, determinant functors and determinant theories §4. Pushdown maps and reciprocity laws §5. Transition matrices and the first Chern class §6. Elementary structures and the second Chern class §7. Equivariant Euler characteristics and the Riemann-Roch theorem §8. The proof of the theorem; reduction to the case of P 1 Z §9. The proof of the theorem; bundles over P 1 Z §10. Appendix: Adelic Riemann-Roch for general bundles when G = 1 References
In this paper we describe the unramified Langlands correspondence for twodimensional local fields, we construct a categorical analogue of the unramified principal series representations and study its properties. The main tool for this description is the construction of a central extension. For this (and other) central extension we prove noncommutative reciprocity laws (i.e. the splitting of the central extensions over some subgroups) for arithmetic surfaces and projective surfaces over a finite field. These reciprocity laws connect central extensions which are constructed locally and globally.
Описано неразветвленное соответствие Ленглендса для двумерных ло-кальных полей, построен категорный аналог неразветвленных представ-лений основной серии и изучены его свойста. Для этого используется конструкция некоторого центрального расширения, для которого (и дру-гих центральных расширений) доказаны некоммутативные законы взаим-ности (т. е. расщепление центральных расширений над некоторыми под-группами) для арифметических поверхностей и проективных поверхно-стей над конечным полем, связывающие центральные расширения, по-строенные локально и глобально.Библиография: 24 наименования.Ключевые слова: 2-векторные пространства, двумерные локаль-ные поля, высшие адели, обобщение программы Ленглендса, двумерные некоммутативные законы взаимности.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.